Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 12 - Rotation of a Rigid Body - Exercises and Problems - Page 350: 41

Answer

See the detailed answer below.

Work Step by Step

a) We know that $$\vec C\times \vec D=0$$ where $\vec C=3\;\hat i$ and we need to find $\vec D$. $$\vec C\times \vec D=(3\;\hat i+0\;\hat j+0\;\hat k)\times (D_x\;\hat i+D_y\;\hat j+D_z\;\hat k)=0$$ $$ (3\;\hat i\times D_x\;\hat i)+(3\;\hat i\times D_y\;\hat j)+(3\;\hat i\times D_z\;\hat k)=0$$ Recall that $\hat i\times \hat i=\hat j\times \hat j=\hat k\times \hat k=0$ $$ \overbrace{(3\;\hat i\times D_x\;\hat i)}^{0}+ \overbrace{(3\;\hat i\times D_y\;\hat j)}^{3D_y\;\hat k}+\overbrace{(3\;\hat i\times D_z\;\hat k)}^{-3D_z\;\hat j}=0$$ $$ 0\;\hat i\times \hat i+ 3D_y\;\hat k-3 D_z\;\hat j=0$$ This means that whether vector $\vec D=0$, or $\vec D=N\;\hat i$ where $N$ is any real number. $$\boxed{\vec D=0,\;{\rm or }\;\vec D=N\;\hat i}$$ _____________________________________________ b) We know that $$\vec C\times \vec E=6\;\hat k$$ $$3\;\hat i\times(E_x\;\hat i+E_y\;\hat j+E_z\;\hat k)=6\;\hat k$$ $$\overbrace{3\;\hat i\times E_x\;\hat i}^{0}+\overbrace{3\;\hat i\times E_y\;\hat j}^{3E_y\;\hat k}+\overbrace{3\;\hat i\times E_z\;\hat k}^{-3E_z\;\hat j}=6\;\hat k$$ It is obvious that $3E_y\;\hat k=6\;\hat k$ and hence $$E_y=2$$ Also, $-3E_z\;\hat j=0$, and hence $E_z=0$. Since $\hat i\times \hat i=0$, whether vector $\vec E=2\;\hat j$, or $\vec D=N\;\hat i+2\;\hat j$ where $N$ is any real number. $$\boxed{\vec E=2\;\hat j,\;{\rm or }\;\vec E=N\;\hat i+2\;\hat j}$$ where $N$ is any real number. _____________________________________________ c) We know that $$\vec C\times \vec F=-3\;\hat j$$ $$3\;\hat i\times(F_x\;\hat i+F_y\;\hat j+F_z\;\hat k)=-3\;\hat j$$ $$\overbrace{3\;\hat i\times F_x\;\hat i}^{0}+\overbrace{3\;\hat i\times F_y\;\hat j}^{3F_y\;\hat k}+\overbrace{3\;\hat i\times F_z\;\hat k}^{-3F_z\;\hat j}=6\;\hat j$$ Thus, $-3F_z=-3\;\hat j$ Hence, $F_z=1$ $$\boxed{\vec F=1\;\hat k,\;{\rm or }\;\vec F=N\;\hat i+1\;\hat k}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.