Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 12 - Rotation of a Rigid Body - Conceptual Questions - Page 347: 10

Answer

$\alpha_a=\alpha_b\gt \alpha_c=\alpha_d$

Work Step by Step

We know that the net torque is given by $$\tau=Fr\sin\theta=I\alpha$$ So, the angular acceleration is $$\alpha=\dfrac{Fr\sin\theta}{I}$$ Recall that the moment of inertia of the given system is given by$I=mr^2$. Hence, $$\alpha=\dfrac{F\color{red}{\bf\not} r\sin\theta}{mr^{\color{red}{\bf\not} 2}}$$ $$\alpha=\dfrac{F \sin\theta}{mr}$$ Now we need to find the angular acceleration for each ball. $$\alpha_a=\dfrac{F_a \sin\theta}{m_ar_a}=\dfrac{F \sin90^\circ}{m r }=\boxed{\dfrac{F }{m r }}$$ $$\alpha_b=\dfrac{F_b \sin\theta}{m_br_b}=\dfrac{\color{red}{\bf\not} 2F \sin90^\circ}{\color{red}{\bf\not} 2m r }=\boxed{\dfrac{F }{m r }}$$ $$\alpha_c=\dfrac{F_c \sin\theta}{m_cr_c}=\dfrac{F \sin90^\circ}{m (2r) }=\boxed{\dfrac{F }{2m r }}$$ $$\alpha_d=\dfrac{F_d \sin\theta}{m_dr_d}=\dfrac{\color{red}{\bf\not} 2F \sin90^\circ}{\color{red}{\bf\not} 2m (2r) }=\boxed{\dfrac{F }{2m r }}$$ Therefore, the rank from the largest to the smallest is as follows; $$\boxed{\boxed{\alpha_a=\alpha_b\gt \alpha_c=\alpha_d}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.