Chemistry: An Introduction to General, Organic, and Biological Chemistry (12th Edition)

Published by Prentice Hall
ISBN 10: 0321908449
ISBN 13: 978-0-32190-844-5

Chapter 9 - Section 9.6 - Properties of Solutions - Additional Questions and Problems - Page 316: 9.95a

Answer

There are 1600 g of $Al(NO_3)_3$ in 2.5 L of that solution.

Work Step by Step

1. Since the molarity of that solution is equal to $ 3.0 \space M \space Al(NO_3)_3$: $1 \space L \space solution = 3.0 \space moles \space AlN_3O_9$ $\frac{1 \space L \space solution}{ 3.0 \space moles \space AlN_3O_9} $ and $\frac{ 3.0 \space moles \space AlN_3O_9}{1 \space L \space solution}$ 2. Determine the molar mass of this compound $(Al(NO_3)_3)$, and setup the conversion factors: Molar mass : $Al: 26.98g $ $N: 14.01g * 3= 42.03g $ $O: 16.00g * 3 *3= 144.0g $ 26.98g + 42.03g + 144.0g = 213.0g $ \frac{1 \space mole \space (Al(NO_3)_3)}{ 213.0 \space g \space (Al(NO_3)_3)}$ and $ \frac{ 213.0 \space g \space (Al(NO_3)_3)}{1 \space mole \space (Al(NO_3)_3)}$ 3. Use the conversion factors to calculate the mass of solute in $ 2.5$ L of that solution: $ 2.5 \space L \space solution \times \frac{ 3.0 \space moles \space AlN_3O_9}{1 \space L \space solution} \times \frac{ 213.0 \space g \space AlN_3O_9}{1 \space mole \space AlN_3O_9} = 1600 \space g \space AlN_3O_9$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.