Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 5 - Section 5.1 - Proving Identities - 5.1 Problem Set - Page 279: 54

Answer

As left side transforms into right side, hence given identity- $\frac{1 -\sin x}{1 + \sin x}$ = $(\sec x - \tan x)^{2}$ is true.

Work Step by Step

Given identity is- $\frac{1 -\sin x}{1 + \sin x}$ = $(\sec x - \tan x)^{2}$ Taking L.S. $\frac{1 -\sin x}{1 + \sin x}$ = $\frac{1 -\sin x}{1 + \sin x}. \frac{1 -\sin x}{1 -\sin x}$ {Multiplying the numerator and denominator of the fraction by the conjugate of the denominator, $(1 -\sin x)$} = $\frac{(1 - \sin x)^{2}}{(1 + \sin x)(1 -\sin x)}$ = $\frac{1 - 2\sin x + \sin^{2}x}{{1^{2} - (\sin x)^{2}}}$ {Recall $(a-b)^{2} = a^{2} -2ab +b^{2}$ and $(a-b)(a+b) $ = $a^{2} - b^{2}$ } = $\frac{1 - 2\sin x + \sin^{2}x}{1 - \sin ^{2} x}$ = $\frac{1 - 2\sin x + \sin^{2}x}{\cos^{2} x}$ ( From first Pythagorean identity) = $\frac{1}{\cos^{2} x} - \frac{2 \sin x}{\cos^{2} x} + \frac{\sin^{2} x}{\cos^{2} x}$ = $\sec^{2} x - 2.\frac{1}{\cos x}.\frac{\sin x}{\cos x} + \tan^{2} x $ (using ratio and reciprocal identities) = $\sec^{2} x - 2.\sec x \tan x + \tan^{2} x $ = $(\sec x - \tan x)^{2}$ = R.S. Hence given identity- $\frac{1 -\sin x}{1 + \sin x}$ = $(\sec x - \tan x)^{2}$ is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.