Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 5 - Section 5.1 - Proving Identities - 5.1 Problem Set - Page 279: 51

Answer

As left side transforms into right side, hence given identity- $\frac{\sec\theta + 1}{\tan\theta} $ = $ \frac{\tan\theta}{\sec\theta - 1}$ is true.

Work Step by Step

Given identity is- $\frac{\sec\theta + 1}{\tan\theta} $ = $ \frac{\tan\theta}{\sec\theta - 1}$ Taking L.S. $\frac{\sec\theta + 1}{\tan\theta} $ = $\frac{\sec\theta + 1}{\tan\theta} . \frac{\sec\theta - 1}{\sec\theta - 1} $ ({Multiplying the numerator and denominator by , $(\sec\theta - 1)$}) = $\frac{ \sec^{2} \theta - 1^{2}} {\tan\theta (\sec\theta - 1)}$ {Recall $(a+b)(a-b) $ = $a^{2} - b^{2}$ } = $\frac{ \tan^{2} \theta} {\tan\theta (\sec\theta - 1)}$ ( From second Pythagorean identity, $\sec^{2}\theta - 1$ = $\tan^{2}\theta$) =$ \frac{\tan\theta}{\sec\theta - 1}$ = R.S. As left side transforms into right side, hence given identity- $\frac{\sec\theta + 1}{\tan\theta} $ = $ \frac{\tan\theta}{\sec\theta - 1}$ is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.