Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 5 - Section 5.1 - Proving Identities - 5.1 Problem Set - Page 278: 12

Answer

12 (a). $- (1 + \sqrt 3)$ 12 (b). $\frac{1 + \sin x}{\cos x}$

Work Step by Step

12 (a). Given expression is- $\frac{2}{1 - \sqrt 3}$ = $\frac{2}{1 - \sqrt 3}. \frac{1 + \sqrt 3}{1 + \sqrt 3}$ {Multiplying by the conjugate of the denominator, $(1 + \sqrt 3)$} = $\frac{2 (1 + \sqrt 3)}{(1 - \sqrt 3)(1 +\sqrt 3)}$ = $\frac{2 (1 + \sqrt 3)}{{1^{2} - (\sqrt 3)^{2}}}$ {Recall $(a-b)(a+b) $ = $a^{2} - b^{2}$ } = $\frac{2 (1 + \sqrt 3)}{1 - 3}$ = $\frac{2 (1 + \sqrt 3)}{-2}$ = $- (1 + \sqrt 3)$ 12 (b). Given expression is- $\frac{\cos x}{1 - \sin x}$ = $\frac{\cos x}{1 - \sin x}. \frac{1 + \sin x}{1 + \sin x}$ {Multiplying the numerator and denominator of the fraction by the conjugate of the denominator, $(1 + \sin x)$} = $\frac{\cos x(1 + \sin x)}{(1 - \sin x)(1 +\sin x)}$ = $\frac{\cos x(1 + \sin x)}{{1^{2} - \sin ^{2} x}}$ {Recall $(a-b)(a+b) $ = $a^{2} - b^{2}$ } = $\frac{\cos x(1 + \sin x)}{1 - \sin ^{2} x}$ = $\frac{\cos x(1 + \sin x)}{\cos^{2} x}$ ( From first Pythagorean identity) = $\frac{1 + \sin x}{\cos x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.