Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.4 De Moivre's Theorem: Powers and Roots of Complex Numbers - 8.4 Exercises - Page 376: 41

Answer

The solutions for $x$ are: $2~(cos~20^{\circ}+i~sin~20^{\circ})$ $2~(cos~140^{\circ}+i~sin~140^{\circ})$ $2~(cos~260^{\circ}+i~sin~260^{\circ})$

Work Step by Step

$x^3-(4+4i~\sqrt{3}) = 0$ $x^3 = (4+4i~\sqrt{3})$ $x^3 = 8~(\frac{1}{2}+\frac{i~\sqrt{3}}{2})$ $x = [8~(\frac{1}{2}+\frac{i~\sqrt{3}}{2})]^{1/3}$ Let $z = 8~(\frac{1}{2}+\frac{i~\sqrt{3}}{2})$ $z = 8~(cos~60^{\circ}+i~sin~60^{\circ})$ $r = 8$ and $\theta = 60^{\circ}$ We can use this equation to find the cube roots: $z^{1/n} = r^{1/n}~[cos(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})+i~sin(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})]$, where $k \in \{0, 1, 2,...,n-1\}$ When k = 0: $z^{1/3} = 8^{1/3}~[cos(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})+i~sin(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})]$ $z^{1/3} = 2~(cos~20^{\circ}+i~sin~20^{\circ})$ When k = 1: $z^{1/3} = 8^{1/3}~[cos(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})+i~sin(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})]$ $z^{1/3} = 2~(cos~140^{\circ}+i~sin~140^{\circ})$ When k = 2: $z^{1/3} = 8^{1/3}~[cos(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})+i~sin(\frac{60^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})]$ $z^{1/3} = 2~(cos~260^{\circ}+i~sin~260^{\circ})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.