Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.4 De Moivre's Theorem: Powers and Roots of Complex Numbers - 8.4 Exercises - Page 376: 23

Answer

(a) The three cube roots are: $4^{1/3}~(cos~50^{\circ}+i~sin~50^{\circ})$ $4^{1/3}~(cos~170^{\circ}+i~sin~170^{\circ})$ $4^{1/3}~(cos~290^{\circ}+i~sin~290^{\circ})$ (b) We can see the three vectors in the complex plane:

Work Step by Step

(a) $z = -2~\sqrt{3}+2~i$ $z = 4~(cos~150^{\circ}+i~sin~150^{\circ})$ $r = 4$ and $\theta = 150^{\circ}$ We can use this equation to find the cube roots: $z^{1/n} = r^{1/n}~[cos(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})+i~sin(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})]$, where $k \in \{0, 1, 2,...,n-1\}$ When k = 0: $z^{1/3} = 4^{1/3}~[cos(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})+i~sin(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})]$ $z^{1/3} = 4^{1/3}~(cos~50^{\circ}+i~sin~50^{\circ})$ When k = 1: $z^{1/3} = 4^{1/3}~[cos(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})+i~sin(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})]$ $z^{1/3} = 4^{1/3}~(cos~170^{\circ}+i~sin~170^{\circ})$ When k = 2: $z^{1/3} = 4^{1/3}~[cos(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})+i~sin(\frac{150^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})]$ $z^{1/3} = 4^{1/3}~(cos~290^{\circ}+i~sin~290^{\circ})$ (b) We can see the three vectors in the complex plane:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.