Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 203: 69

Answer

$$\frac{-1}{\tan\alpha-\sec\alpha}+\frac{-1}{\tan\alpha+\sec\alpha}=2\tan\alpha$$ The left side is equal to the right side. This is an identity.

Work Step by Step

$$\frac{-1}{\tan\alpha-\sec\alpha}+\frac{-1}{\tan\alpha+\sec\alpha}=2\tan\alpha$$ We would simplify the left side. $$A=\frac{-1}{\tan\alpha-\sec\alpha}+\frac{-1}{\tan\alpha+\sec\alpha}$$ $$A=\frac{-(\tan\alpha+\sec\alpha)-(\tan\alpha-\sec\alpha)}{(\tan\alpha-\sec\alpha)(\tan\alpha+\sec\alpha)}$$ $$A=\frac{-\tan\alpha-\sec\alpha-\tan\alpha+\sec\alpha}{\tan^2\alpha-\sec^2\alpha}$$ (since $(a-b)(a+b)=a^2-b^2$) $$A=\frac{-2\tan\alpha}{\tan^2\alpha-\sec^2\alpha}$$ Now we transform $\tan\alpha$ and $\sec\alpha$ according to the following identities: $$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\hspace{2cm}\sec\alpha=\frac{1}{\cos\alpha}$$ Therefore, $$\tan^2\alpha-\sec^2\alpha=\frac{\sin^2\alpha}{\cos^2\alpha}-\frac{1}{\cos^2\alpha}=\frac{\sin^2\alpha-1}{\cos^2\alpha}=\frac{-(1-\sin^2\alpha)}{\cos^2\alpha}=\frac{-\cos^2\alpha}{\cos^2\alpha}=-1$$ (since $1-\sin^2\alpha=\cos^2\alpha$, according to a Pythagorean identity) Hence, $A$ would be $$A=\frac{-2\tan\alpha}{-1}$$ $$A=2\tan\alpha$$ We thus have proved that the expression is an identity by making the left side equal to the right side.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.