Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 2 - Acute Angles and Right Triangles - Section 2.2 Trigonometric Functions of Non-Acute Angles - 2.2 Exercises: 26

Answer

$sin$(750)$^{\circ}$ = $\frac{1}{2}$ $cos$(750)$^{\circ}$ = $\frac{\sqrt3}{2}$ $tan$(750)$^{\circ}$ = $\frac{\sqrt3}{3}$ $cot$(750)$^{\circ}$ = $\sqrt3$ $csc$(750)$^{\circ}$ = 2 $sec$(750)$^{\circ}$ = $\frac{2\sqrt3}{3}$

Work Step by Step

750$^{\circ}$ We can solve for the functions by using the coterminal angle. We can find the coterminal angle by adding or subtracting 360$^{\circ}$ as many times as needed. 750$^{\circ}$ - 360$^{\circ}$ = 390$^{\circ}$ 390$^{\circ}$ - 360$^{\circ}$ = 30$^{\circ}$ $sin$(30)$^{\circ}$ = $\frac{1}{2}$ $cos$(30)$^{\circ}$ = $\frac{\sqrt3}{2}$ $tan$(30)$^{\circ}$ = $\frac{1}{\sqrt3}$ = $\frac{\sqrt3}{3}$ $cot$(30)$^{\circ}$ = $\frac{\sqrt3}{1}$ = $\sqrt3$ $csc$(30)$^{\circ}$ = $\frac{2}{1}$ = 2 $sec$(30)$^{\circ}$ = $\frac{2}{\sqrt3}$ = $\frac{2\sqrt3}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.