Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.4 - Rational Expressions - 1.4 Exercises: 64

Answer

$\frac{5}{(x-4)(x+1)(x+3)}$

Work Step by Step

Looking at the numerator: Find the LCD (i.e. $(x-4)(x+1)$) of the two fractions and then combine: $\frac{(x-3)(x+1)}{(x-4)(x+1)}-\frac{(x+2)(x-4)}{(x-4)(x+1)}$ $=\frac{x^{2}-2x-3}{(x-4)(x+1)}-\frac{x^{2}-2x-8}{(x-4)(x+1)}$ $=\frac{x^{2}-2x-3-x^{2}+2x+8}{(x-4)(x+1)}$ Collect like terms: $=\frac{5}{(x-4)(x+1)}$ The original fraction in question becomes: $\frac{\frac{5}{(x-4)(x+1)}}{x+3}$ Apply the fraction rule $\frac{\frac{b}{c}}{a}=\frac{b}{c\times a}$. This then becomes: $=\frac{5}{(x-4)(x+1)(x+3)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.