Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.8 - Inverse Functions - Exercise Set - Page 269: 18

Answer

a) ${{f}^{-1}}\left( x \right)=\sqrt[3]{x+1}$ b) they are inverses

Work Step by Step

(a) Consider the function, $f\left( x \right)={{x}^{3}}-1$ Step-1-Replace $f\left( x \right)$ with $y$ in $f\left( x \right)$ $\begin{align} & f\left( x \right)={{x}^{3}}-1 \\ & y={{x}^{3}}-1 \end{align}$ Step-2-Interchange $x$ and $y$ $\begin{align} & y={{x}^{3}}-1 \\ & x={{y}^{3}}-1 \\ \end{align}$ Step-3-Solve for $y$. Add $1$ to each side $\begin{align} & x={{y}^{3}}-1 \\ & x+1={{y}^{3}}-1+1 \\ & x+1={{y}^{3}} \end{align}$ Take the cube root of each side $\begin{align} & x+1={{y}^{3}} \\ & \sqrt[3]{x+1}=\sqrt[3]{{{y}^{3}}} \\ & \sqrt[3]{x+1}=y \end{align}$ Step-4-Replace $y$ in step 3 by ${{f}^{-1}}\left( x \right)$ $\begin{align} & y=\sqrt[3]{x+1} \\ & {{f}^{-1}}\left( x \right)=\sqrt[3]{x+1} \end{align}$ Therefore, the required inverse of the function is ${{f}^{-1}}\left( x \right)=\sqrt[3]{x+1}$ (b) Consider the functions: $f\left( x \right)={{x}^{3}}-1$ and ${{f}^{-1}}\left( x \right)=\sqrt[3]{x+1}$ Replace $x$ with ${{f}^{-1}}\left( x \right)$ $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)={{\left( {{f}^{-1}}\left( x \right) \right)}^{3}}-1 \\ & ={{\left( \sqrt[3]{x+1} \right)}^{3}}-1 \end{align}$ Simplify $\begin{align} & f\left( g\left( x \right) \right)={{\left( \sqrt[3]{x+1} \right)}^{3}}-1 \\ & =\left( x+1 \right)-1 \\ & =x \end{align}$ Now, find ${{f}^{-1}}\left( f\left( x \right) \right)$ The equation for ${{f}^{-1}}\left( x \right)$ is given as: ${{f}^{-1}}\left( x \right)=\sqrt[3]{x+1}$ Replace $x$ with $f\left( x \right)$ $\begin{align} & {{f}^{-1}}\left( f\left( x \right) \right)=\sqrt[3]{f\left( x \right)+1} \\ & =\sqrt[3]{\left( {{x}^{3}}-1 \right)+1} \end{align}$ Simplify $\begin{align} & {{f}^{-1}}\left( f\left( x \right) \right)=\sqrt[3]{\left( {{x}^{3}}-1 \right)+1} \\ & =\sqrt[3]{{{x}^{3}}} \\ & =x \end{align}$ Thus, $f\left( {{f}^{-1}}\left( x \right) \right)=x$ and ${{f}^{-1}}\left( f\left( x \right) \right)=x$ It can be easily observed that ${{f}^{-1}}$ can be expressed in $f$ if we add 1 and then take the cube root over the whole expression. Hence, the functions $f$ and \[{{f}^{-1}}\] are inverses of each other.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.