Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 258: 38

Answer

The values of the functions are as follows: $f+g=4x-7,f-g=-2{{x}^{2}}-4x+17,fg=-{{x}^{4}}-4{{x}^{3}}+17{{x}^{2}}+20x-60$ and $\frac{f}{g}=\frac{5-{{x}^{2}}}{{{x}^{2}}+4x-12}$. The domain of the functions $f+g,f-g$ , and $fg$ is $\left( -\infty ,\infty \right)$ and that of $\frac{f}{g}$ is $\left( -\infty ,-6 \right)\cup \left( -6,2 \right)\cup \left( 2,\infty \right)$.

Work Step by Step

Calculate the value of $f+g$ as shown below to get: $\begin{align} & f+g=f\left( x \right)+g\left( x \right) \\ & =\ 5-{{x}^{2}}+{{x}^{2}}+4x-12 \\ & =4x-7 \end{align}$ Calculate the value of $f-g$ as shown below to get: $\begin{align} & f-g=f\left( x \right)-g\left( x \right) \\ & =\ \left( 5-{{x}^{2}} \right)-\left( {{x}^{2}}+4x-12 \right) \\ & =5-{{x}^{2}}-{{x}^{2}}-4x+12 \\ & =-2{{x}^{2}}-4x+17 \end{align}$ Calculate the value of $fg$ as shown below to get: $\begin{align} & fg=f\left( x \right)g\left( x \right) \\ & =\left( 5-{{x}^{2}} \right)\left( {{x}^{2}}+4x-12 \right) \\ & =5\left( {{x}^{2}}+4x-12 \right)-{{x}^{2}}\left( {{x}^{2}}+4x-12 \right) \\ & =5{{x}^{2}}+20x-60-{{x}^{4}}-4{{x}^{3}}+12{{x}^{2}} \end{align}$ $=-{{x}^{4}}-4{{x}^{3}}+17{{x}^{2}}+20x-60$ Calculate the value of $\frac{f}{g}$ as shown below to get: $\begin{align} & \frac{f}{g}=\frac{f\left( x \right)}{g\left( x \right)} \\ & =\frac{5-{{x}^{2}}}{{{x}^{2}}+4x-12} \end{align}$ If the function $\frac{f}{g}$ is divided by zero, it will be undefined. So, put the denominator ${{x}^{2}}+4x-12$ equal to zero. $\begin{align} & {{x}^{2}}+4x-12=0 \\ & {{x}^{2}}+6x-2x-12=0 \\ & x\left( x+6 \right)-2\left( x+6 \right)=0 \\ & \left( x-2 \right)\left( x+6 \right)=0 \end{align}$ Case 1: $\begin{align} & x-2=0 \\ & x=2 \end{align}$ Case 2: $\begin{align} & x+6=0 \\ & x=-6 \end{align}$ This implies that $x=2$ and $x=-6$. Now, the domain of the function $\frac{f}{g}$ is all the real numbers except 2 and $-6$. Therefore, the domain of $\frac{f}{g}$ is $\left( -\infty ,-6 \right)\cup \left( -6,2 \right)\cup \left( 2,\infty \right)$. The functions $f+g,f-g,fg$ do not have division or even roots, so the domain of the functions $f+g,f-g,fg$ is the set of real numbers -- that is, $\left( -\infty ,\infty \right)$. Hence, the domain of the functions $f+g,f-g$ , and $fg$ is $\left( -\infty ,\infty \right)$ and that of $\frac{f}{g}$ is $\left( -\infty ,-6 \right)\cup \left( -6,2 \right)\cup \left( 2,\infty \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.