Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.3 - Page 129: 18

Answer

a. Statement: For every real number x, there is a real number y such that x + y = 0. Given any real number x, there exists a real number y such that x + y = 0. Given any real number, we can find another real number (possibly the same) such that the sum of the given number plus the other number equals 0. Every real number can be added to some other real number (possibly itself) to obtain 0. b. Negation: ∃ a real number x such that ∀ real numbers y, x + y $\neq$ 0. There is a real number x for which there is no real number y with x + y $\neq$ 0. There is a real number x with the property that x + y $\neq$ 0 for any real number y. Some real number has the property that its sum with any other real number is nonzero.

Work Step by Step

Negation of multiply-quantified statement: ~($\forall x$ in D, $\exists y$ in E such that P(x,y)) $\equiv$ $\exists x$ in D such that $\forall y$ in E, ~P(x,y)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.