Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.2 - Combining Functions; Shifting and Scaling Graphs - Exercises 1.2 - Page 18: 1

Answer

Domain f(x) = $-\infty < x < \infty$ Range f(x) = $-\infty < y < \infty$ Domain g(x) = $x \geq 1$ Range g(x) = $y \geq 0$ Domain (f + g)(x) = $x \geq 1$ (common domain) Range (f+g)(x) = $y \geq 1$. Domain f(x)g(x) = $x \geq 1$ (common domain) Range f(x)g(x) = $y \geq 0$.

Work Step by Step

Domain f(x) = $-\infty < x < \infty$ Range f(x) = $-\infty < y < \infty$ For the domain of g(x) the answers of the square root need to be real numbers. So $x - 1 \geq 0 = x \geq 1$. Thus domain g(x) = $x \geq 1$. The range of a square root function is $y \geq 0$. (f + g)(x) = $ x + \sqrt {x-1}$. The domain for (f + g)(x) is the common domain of f(x) and g(x). Thus the domain of (f + g)(x) = $x \geq 1$. (f + g)(1) = $ 1 + \sqrt {1-1} = $ 1 +$ \sqrt {0} $$ = 1 + 0 = 1$. So the range of (f+g)(x) = $y \geq 1$. $(f \times g)(x) = f(x)g(x) = x\sqrt {x-1}$. The domain for f(x)g(x) is the common domain of f(x) and g(x). Thus the domain of f(x)g(x) = $x \geq 1$. f(1)g(1) = $ 1\sqrt {1-1} = $ 1$\sqrt {0}$ $ = 1 \times 0 = 0$. So the range of f(x)g(x) = $y \geq 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.