Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - Review - Exercises - Page 1162: 36

Answer

$\iint_S F\cdot dS=0$

Work Step by Step

Apply Divergence's Theorem as: $\iint_S F\cdot dS=\iiint_E div F dV$ Here, $S$ shows a closed surface and $E$ is the region inside that surface $S$. Given: $G(x,y,z)=xi+yj+zk$ and $ div G=1+1+1=3$ Let us consider that $f(x,y,z)=\dfrac{1}{(x^2+y^2+z^2)^{3/2}}$ Now, $\nabla f=f_xi+f_y j+f_z k$ or, $\nabla f=\dfrac{-3x}{(x^2+y^2+z^2)^{5/2}}i+\dfrac{-3y}{(x^2+y^2+z^2)^{5/2}} j+\dfrac{-3z}{(x^2+y^2+z^2)^{5/2}}$ or, $\nabla f=-\dfrac{3(xi+yj+zk)}{(x^2+y^2+z^2)^{5/2}}$ Now,we have $div F=div (f G)=\nabla f \cdot G+f (div G)$ and $-\dfrac{3}{(x^2+y^2+z^2)^{5/2}}(xi+yj+zk) \times (xi+yj+zk) +\dfrac{3}{(x^2+y^2+z^2)^{3/2}}=-\dfrac{3}{(x^2+y^2+z^2)^{5/2}}(x^2+y^2+z^2)+\dfrac{3}{(x^2+y^2+z^2)^{3/2}}$ This implies that $\iint_S F\cdot dS=\iiint_E div F dV=0$ Hence, $\iint_S F\cdot dS=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.