Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - Review - Exercises - Page 1162: 35

Answer

$4 \pi$

Work Step by Step

Apply Divergence's Theorem: $\iint_S F\cdot dS=\iiint_E div F dV$ and div $F=3(x^2+y^2+z^2)=3(r^2+z^2)$ For the cylindrical coordinates: $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1; 0 \leq z \leq 2$ Now, we have $ div F=1+1+1=3$ and $\iiint_E div F dV=3 \iiint_E dV=(3) \times (\dfrac{4 \pi}{3})=4 \pi$ Also,we have $F[r(\theta ,\phi)]=\sin \phi \cos \theta i+\sin \phi \sin \theta j+\cos \phi k$ Thus, $\iint_S F\cdot dS=\sin \phi(\sin^2 \phi \cos^2 \theta+\sin^2 \phi \sin^2 \theta+\cos^2 \phi)dA=\iint_D \sin \phi dA$ or, $\int_0^{\pi} \int_0^{2 \pi} \sin (\phi) d\theta d \phi=\int_0^{\pi} \sin (\phi) d\phi \int_0^{2 \pi} d\theta$ or, $\iint_S F\cdot dS=[-\cos (\phi)]_0^{\pi}\times [\theta]_0^{2\pi}$ Hence, $\iint_S F\cdot dS=\iiint_E div F dV=(-\cos \pi +\cos 0)(2 \pi-0)=4 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.