Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - Review - Exercises - Page 1161: 18

Answer

curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$ and div $F=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$

Work Step by Step

Given: $F=e^{-x} \sin y\hat{i}+e^{-y} \sin z\hat{j}+e^{-z} \sin x\hat{k}$ Definition of curl $F=\nabla \times F$ Let us consider $F=pi+qj+rk$ curl $F=(\dfrac{\partial r}{\partial x}-\dfrac{\partial q}{\partial z}){i}+(\dfrac{\partial p}{\partial z}-\dfrac{\partial r}{\partial x}){j}+(\dfrac{\partial q}{\partial x}-\dfrac{\partial p}{\partial y}){k}$ Thus, curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$ Definition of div $F=\nabla \cdot F$ Le us consider $F=pi+qj+rk$ That is, div $F=\dfrac{\partial p}{\partial x}+\dfrac{\partial q}{\partial y}+\dfrac{\partial r}{\partial z}$ Now, we have div $F=\dfrac{\partial (e^{-x} \sin y)}{\partial x}+\dfrac{\partial (e^{-y} \sin z)}{\partial y}+\dfrac{\partial (e^{-z} \sin x)}{\partial z}$ or, div $F=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.