Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1158: 32

Answer

$F=-W k$

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. Here we have $\iint_S fc \cdot n dS=\iiint_Ediv (fc) dV$ or, $\iint_S fc \cdot n dS=\iiint_E f( \nabla \cdot c) +(\nabla f) \cdot c dV$ or, $\iint_S fc \cdot n dS=\iiint_E f(0) +(\nabla f) \cdot c dV$ or, $\iint_S fn \cdot c dS=\iiint_E (\nabla f) \cdot c dV$ and $\iint_S f \cdot n dS=\iiint_E (\nabla f) dV$ $\nabla P=\dfrac{\partial p}{\partial x}i+\dfrac{\partial p}{\partial y}j+\dfrac{\partial p}{\partial z}k=\rho g k$ Thus $F=-\iiint_E (\nabla P) dV=-(\rho g k) \iiint_E dV$ Here, $\rho$ is the density of the liquid and $\iiint_E dV$ is the volume of the solid. We know that the weight of the liquid is given by $W=\rho g v$ Hence, we have $F=-W k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.