Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1158: 23

Answer

$div E=0$ for the electric field $E(x) =\dfrac{\epsilon Q x}{|x^3|}$

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. $div F=\dfrac{\partial x}{\partial x}+\dfrac{\partial y}{\partial y}+\dfrac{\partial z}{\partial z}=1+1+1=3$ Here, $f(x,y,z)=\dfrac{1}{(x^2+y^2+z^2)^{3/2}}$ and $\nabla f=f_xi+f_y j+f_z k$ $\nabla f=-\dfrac{3x}{(x^2+y^2+z^2)^{5/2}}i-\dfrac{3y}{(x^2+y^2+z^2)^{5/2}} j-\dfrac{3z}{(x^2+y^2+z^2)^{5/2}}k=-\dfrac{3}{(x^2+y^2+z^2)^{5/2}}(xi+yj+zk)$ Here, $E(x) =\dfrac{\epsilon Q x}{|x^3|}=\dfrac{\epsilon Q (xi+yj+zk) }{(x^2+y^2+z^2)^{3/2}}= \epsilon Q F$ Now, $div F=-\dfrac{3}{(x^2+y^2+z^2)^{5/2}}(xi+yj+zk) \cdot (xi+yj+zk)+\dfrac{3}{(x^2+y^2+z^2)^{3/2}}=0$ Hence, it has been verified that $div E=0$ for the electric field $E(x) =\dfrac{\epsilon Q x}{|x^3|}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.