Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1158: 18

Answer

$\dfrac{3 \pi}{2}$

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}=\dfrac{\partial (z \tan^{-1} y^2)}{\partial x}+\dfrac{\partial (z^3(\ln (x^2+1))}{\partial y}+\dfrac{\partial (z)}{\partial z}=0+0+1=1$ $\iiint_Ediv \overrightarrow{F}dV=\int_{0}^{2 \pi}\int_0^{1} \int_{1}^{2-r^2} r dz dr d\theta=(2 \pi) \int_{0}^{1} [zr] dr$ $=(2 \pi) \int_0^{1} r-r^3 dr$ $=\dfrac{\pi}{2}$ Now, flux through the disk $=-\iint_{D} z dA=-\pi(1)^2=-\pi$ Flux through paraboloid = Total Flux -Flux Through Disk $=\dfrac{\pi}{2}-(-\pi)=\dfrac{3 \pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.