Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.9 Exercises - Page 1158: 17

Answer

$\dfrac{13 \pi}{20}$

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}=\dfrac{\partial (z^2 x)}{\partial x}+\dfrac{\partial (\dfrac{1}{3} y^3+\tan z)}{\partial y}+\dfrac{\partial (x^2z+y^2)}{\partial z}=z^2+y^2+x^2$ Flux through $S_2$ $=\int_{0}^{\pi/2}\int_0^{2 \pi} \int_{0}^{1} \rho^2 (\rho^2 \sin \phi) d \rho d\phi d \theta=\int_{0}^{\pi/2}\int_0^{2 \pi} \int_{0}^{1} \rho^4 \sin \phi d \rho d\phi d \theta=\int_{0}^{\pi/2} \sin \phi d\pi \int_0^{2 \pi} d \theta \int_0^1 \rho^4 d\rho=\dfrac{2\pi}{5}$ Flux through $S_1$ $=-\int_{0}^{\pi/2}\int_{0}^{1} r^2 \sin^2 \theta r dr d \theta=-\int_{0}^{\pi/2}\sin^2 \theta d\theta \int_{0}^{1} r^3 dr=(-1/2) [\theta-\dfrac{\sin 2\theta}{2}]_0^{2 \pi}=-\dfrac{\pi}{4}$ Flux through $S$ $=\dfrac{2\pi}{5}-\dfrac{\pi}{4}=\dfrac{13 \pi}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.