Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.8 Exercises - Page 1151: 6

Answer

$0$

Work Step by Step

Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr $ The boundary of the part of the ellipsoid $4x^2+y^2+4z^2=4$ is a circle $x^2+z^2=1$ The parameterization of the boundary is: $C: r(t)=\cos ti+0j+\sin t k$ and $dr=(-sin ti+0j +\cos t k) dt$ Now, $F(r(t))=i+e^{\cos t \sin t} j+\cos^2 t \sin t k$ and $\iint_{C} F \cdot dr =\int_0^{2 \pi} (i+e^{\cos t \sin t} j+\cos^2 t \sin t k) \cdot (-\sin t i+0 j+\cos t k) dt$ or, $=\int_0^{2 \pi} -sin t+\cos^3 t \sin t dt$ or, $=\int_{0}^{2\pi} (1-\cos^3 t) (-sin t dt)$ Let us suppose that, $u=\cos t $ and $du =-\sin t dt$ Therefore, $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr=\int_{1}^{1} (1-u^3) du=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.