Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.6 Exercises - Page 1132: 23

Answer

$x=2 \sin \phi, \cos \theta; y=2 \sin \phi, \sin \theta;z=2 \cos \phi$ ;$0 \leq \phi \leq \pi/4,0 \leq \theta \leq \pi/4$ or, $x=x,y=y,z=\sqrt{4-x^2-y^2}; x^2+y^2 \leq \sqrt 2$

Work Step by Step

The parametric equations inside the cone are: $( r \cos \theta, r \sin \theta , z)$ Re-arrange the equation of the sphere as: $z=\sqrt{4-(x^2+y^2)}$ $z=\sqrt{4-(r^2 \sin^2 \theta+r^2 \cos \theta)}=\sqrt {4-r^2}$ Thus, the points inside the sphere are: $[ r \cos \theta, r \sin \theta , \sqrt{4-(x^2+y^2)}]$ where, $\theta \in [0, 2 \pi] $ and $r \in [\sqrt 2,2] $ To determine the range of $r$, we must have: $\sqrt{x^2+y^2}=\sqrt{4-(x^2+y^2)}$ $\implies x^2+y^2=4-(x^2+y^2)$ After simplifications, we get $r=\sqrt 2$ Hence, the parametric representation of the sphere is: $x=2 \sin \phi, \cos \theta; y=2 \sin \phi, \sin \theta;z=2 \cos \phi$ ;$0 \leq \phi \leq \pi/4,0 \leq \theta \leq \pi/4$ or, $x=x,y=y,z=\sqrt{4-x^2-y^2}; x^2+y^2 \leq \sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.