Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.2 Exercises - Page 1098: 50

Answer

$\int_C r \cdot dr =\dfrac{1}{2}[|r(b)|^2-|r(a)|^2]$

Work Step by Step

Let us consider $r(t)=x(t) i+y(t) j+z(t) k$ Also, we have $\int_C r \cdot dr =\int_a^b r r'(t) dt$ or, $\int_C r \cdot dr =\int_a^b (x(t) i+y(t) j+z(t) k) \cdot [x'(t) i+y'(t) j+z'(t) k] dt$ or, $\int_C r \cdot dr = \int_a^b [x(t) x'(t) dt +y(t) y'(t) +z(t) z'(t)] dt$ or, $\int_C r \cdot dr = \int_a^b \dfrac{1}{2} \dfrac{d}{dT} [x^2(t) +y^2(t) +z^2(t) ] dt$ $\int_C r \cdot dr =(\dfrac{1}{2}) [x^2(t) +y^2(t) +z^2(t) ]_a^b $ Hence, it has been shown that $\int_C r \cdot dr =\dfrac{1}{2}[|r(b)|^2-|r(a)|^2]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.