Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 988: 42

Answer

Maximum value : $3533.34$ $cm^{3}$, Minimum value: $2947.94$ $cm^{3}$

Work Step by Step

We need to apply the Lagrange Multipliers Method to determine the maximum and minimum values of a rectangular box of maximum volume. We have: $\nabla f=\lambda \nabla g$ The volume of a box is $V=xyz$ Consider $f(x,y,z)=V=xyz$ Surface area, $S=2xy+2yz+2zx$ From the given question, $S=1500 cm^2$ Surface area, $S=2xy+2yz+2zx=1500 cm^2$ or, $xy+yz+zx=750 cm^2$ Now, $\nabla f=\lt yz,xz,xy \gt$ and $\lambda \nabla g=\lambda \lt 2x,2y,2z \gt$ Total length of the edge can be calculated as: $4x+4y+4z=200$ or, $x+y+z=50$ After solving equations $x+y+z=50$ and $xy+yz+zx=750 cm^2$, we get $z=50-x-y$ Simplify to get the value of $\lambda =x=y$. Therefore, the volume of a box is $V=xyz$; when $x=y=\dfrac{5(10+\sqrt {10})}{-3}$ or, $x=y=\dfrac{-50 \pm 5\sqrt {10}}{-3}$ The critical points of $V(x,y)$ are $(\dfrac{-50+5\sqrt {10})}{-3},\dfrac{-50+5\sqrt {10})}{-3})$ and $(\dfrac{-50-5\sqrt {10})}{-3},\dfrac{-50-5\sqrt {10})}{-3})$ Also, $V(\dfrac{-50+5\sqrt {10})}{-3},\dfrac{-50+5\sqrt {10})}{-3})=3533.34$ $cm^{3}$ and $(\dfrac{-50-5\sqrt {10})}{-3},\dfrac{-50-5\sqrt {10})}{-3})=2947.94$ $cm^{3}$ Hence, Maximum value : $3533.34$ $cm^{3}$, Minimum value: $2947.94$ $cm^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.