Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.6 Exercises - Page 968: 31

Answer

(a) $-\dfrac{40}{3\sqrt 3}$ (b) A vector pointing in the direction of the origin from the point $(x,y,z)$

Work Step by Step

(a) Formula to calculate the maximum rate of change of $f$: $D_uT=|\nabla T(x,y,z)| \cdot u$ $\nabla T(x,y,z)=\lt -\dfrac{360x}{(x^2+y^2+z^2))^{3/2}},-\dfrac{360y}{(x^2+y^2+z^2))^{3/2}},-\dfrac{360z}{(x^2+y^2+z^2))^{3/2}} \gt$ $\nabla T(1,2,2)=\lt -\dfrac{40}{3},-\dfrac{80}{3},-\dfrac{80}{3} \gt$ $D_uT(1,2,2) \cdot u=(\lt -\dfrac{40}{3},-\dfrac{80}{3},-\dfrac{80}{3} \gt) \lt \dfrac{1}{\sqrt 3},-\dfrac{1}{\sqrt 3},\dfrac{1}{\sqrt 3})\gt=-\dfrac{40}{3\sqrt 3}+\dfrac{80}{3\sqrt 3}-\dfrac{80}{3\sqrt 3}=-\dfrac{40}{3\sqrt 3}$ (b) From part (a), we have $\nabla T(x,y,z)=\lt -\dfrac{360x}{(x^2+y^2+z^2)^{3/2}},-\dfrac{360y}{(x^2+y^2+z^2)^{3/2}},-\dfrac{360z}{(x^2+y^2+z^2)^{3/2}} \gt$ or, $\nabla T(x,y,z)=\lt \dfrac{360}{(x^2+y^2+z^2))^{3/2}}(-x,-y,-z)\gt$ Hence, a vector pointing in the direction of the origin from the point $(x,y,z)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.