Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.5 Exercises - Page 956: 50

Answer

$\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}=e^{-2s}[ \dfrac{\partial^2 u}{\partial s^2}+\dfrac{\partial^2 u}{\partial t^2}]$

Work Step by Step

$\dfrac{\partial^2 u}{\partial s^2}=(u_{xx} \times x^2_s+u_x \times x_{ss})+(u_{xx}x^2_s+u_x \times x_{ss})+(u_{yy} \times y^2_s+u_y y_{ss})+(u_{xx} \times x^2_s+u_x x_{ss}) ; \\ \dfrac{\partial^2 u}{\partial t^2}=(u_{xx} \times x^2_t+u_x \times x_{tt})+(u_{xx}x^2_t+u_x \times x_{tt})+(u_{yy} \times y^2_t+u_y \times y_{tt})+(u_{xx}x^2_s+u_x x_{tt})$ Now, $\dfrac{\partial^2 u}{\partial s^2}+\dfrac{\partial^2 u}{\partial t^2}=e^{2s} \times (\dfrac{\partial^2 u}{\partial x^2} ) \times (\cos^2 t+\sin^2 t)+ e^{2s} \times ( \dfrac{\partial^2 u}{\partial y^2}) \times (\sin^2 t+\cos^2 t) $ This implies that $\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}=(e^{-2s}) [ \dfrac{\partial^2 u}{\partial s^2}+\dfrac{\partial^2 u}{\partial t^2}] \bf({Verified})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.