Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 936: 35

Answer

$\displaystyle \frac{\partial u}{\partial x}=y \sin^{-1}(yz)$, $\displaystyle \frac{\partial u}{\partial y}=\frac{xyz}{\sqrt{1-y^{2}z^{2}}}+x\sin^{-1}(yz)$, $ \displaystyle \frac{\partial u}{\partial z}=\frac{xy^{2}}{\sqrt{1-y^{2}z^{2}}}$

Work Step by Step

Treat y and z as constant to calculate $\displaystyle \frac{\partial u}{\partial x}$ $\displaystyle \frac{\partial u}{\partial x} =y \sin^{-1}(yz)\cdot(1)=y \sin^{-1}(yz)$ Treat x and z as constant to calculate $\displaystyle \frac{\partial u}{\partial y}$ $\displaystyle \frac{\partial u}{\partial y}\stackrel{\text{product rule} }{=} x\{y \displaystyle \cdot\frac{\partial}{\partial y}[\sin^{-1}(yz)]+\frac{\partial}{\partial y}(y)\cdot \sin^{-1}(yz)\}$ ... chain rule for the first term, $=xy\displaystyle \cdot\frac{1}{\sqrt{1-(yz)^{2}}}(z) +x \cdot\sin^{-1}(yz)$ $=\displaystyle \frac{xyz}{\sqrt{1-y^{2}z^{2}}}+x\sin^{-1}(yz)$ Treat x and y as constant to calculate $\displaystyle \frac{\partial u}{\partial z}$ $ \displaystyle \frac{\partial u}{\partial z}=xy\cdot\frac{\partial}{\partial z}[\sin^{-1}(yz)]\qquad$... chain rule ... $=xy\displaystyle \cdot\frac{1}{\sqrt{1-(yz)^{2}}}\cdot[\frac{\partial}{\partial z}(yz)]$ $=xy\displaystyle \cdot\frac{1}{\sqrt{1-(yz)^{2}}}\cdot[y]$ $=\displaystyle \frac{xy^{2}}{\sqrt{1-y^{2}z^{2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.