Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 877: 47

Answer

$\dfrac{d}{dt}[u(t) \cdot v(t))]=2t \cos t+2 \sin t -2 \cos t \sin t$

Work Step by Step

Given: $u(t)=\lt \sin t,\cos t, t \gt$ and $v(t)=\lt t, \cos t, \sin t \gt$ Our aim is to prove: $\dfrac{d}{dt}[u(t) \cdot v(t))]$. $u(t)=\lt \sin t,\cos t, t \gt \implies u'(t)=\lt \cos t,-\sin t, 1 \gt $ and $v(t)=\lt t, \cos t, \sin t \gt \implies v'(t)=\lt 1, -\sin t, \cos t \gt $ Since we have: $\dfrac{d}{dt}[u(t) \cdot v(t)]=u'(t) \cdot v(t)+u(t) \cdot v'(t)$ Thus, $\dfrac{d}{dt}[u(t) \cdot v(t)]=\lt \cos t,-\sin t, 1 \gt \cdot \lt t, \cos t, \sin t \gt+\lt \sin t,\cos t, t \gt \cdot \lt 1, -\sin t, \cos t \gt$ $=2t \cos t+2 \sin t -2 \cos t \sin t$ Hence, $\dfrac{d}{dt}[u(t) \cdot v(t))]=2t \cos t+2 \sin t -2 \cos t \sin t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.