Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 877: 39

Answer

$\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$

Work Step by Step

Given: $\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ In order to evaluate the integral we will have to integrate each component of the function individually. Let $I=\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ Thus, $I=\int \sec^2 tdti+\int t(t^2+1)^3dtj+\int t^2 \ln t dtk$ $I=\tan ti+ Aj+Bk$ ... (1) Here, $A=\int t(t^2+1)^3dt$ and $B=\int t^2 \ln t dt$ Consider $A=\int t(t^2+1)^3dt$ suppose $p=t^2+1 \implies dp=2tdt$ Thus, $A=\frac{1}{2}\int p^3dp=\frac{1}{8}p^4=\frac{1}{8}(t^2+1)^4$ Now, consider $B=\int t^2 \ln t dt=\ln t (1/3t^3)-\int (1/3t^3) \dfrac{1}{t} dt=\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3$ Plug in the values of A and B in equation (1) and we get $I=\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$ Here, C is the constant of integration.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.