Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 877: 37

Answer

$\mathrm{i}+\mathrm{j}+\mathrm{k}$

Work Step by Step

Use the last boxed formula of this section: $I= \displaystyle \int_{0}^{\pi/2}(3\sin^{2}t\cos t\mathrm{i}+3\sin t\cos^{2}t\mathrm{j}+2\sin t\cos t\mathrm{k})dt$ $=(\displaystyle \int_{0}^{\pi/2}3\sin^{2}t\cos tdt)\mathrm{i}+(\int_{0}^{\pi/2}3\sin t\cos^{2}tdt)\mathrm{j}+(\int_{0}^{\pi/2}2\sin t\cos tdt)\mathrm{k}$ First integral : $\displaystyle \left[\begin{array}{l} u=\sin t\\ du=\cos tdt \end{array}\right]=3\int_{0}^{\pi/2}u^{2}du=\left[u^{3}\right]_{0}^{\pi/2}$ Second integral: $\displaystyle \left[\begin{array}{l} u=\cos t\\ du=-\sin tdt \end{array}\right]=3\int_{0}^{\pi/2}u^{2}du=-\left[u^{3}\right]_{0}^{\pi/2}$ third integral: $\left[\begin{array}{l} u=\sin t\\ du=\cos tdt \end{array}\right]=$2$\displaystyle \int_{0}^{\pi/2}udu=\left[u^{2}\right]_{0}^{\pi/2}$ $I=[\sin^{3}t]_{0}^{\pi/2}\mathrm{i}+[-\cos^{3}t]_{0}^{\pi/2}\mathrm{j}+[\sin^{2}t]_{0}^{\pi/2}\mathrm{k}$ $=(1-0)\mathrm{i}+(0+1)\mathrm{j}+(1-0)\mathrm{k}$ $=\mathrm{i}+\mathrm{j}+\mathrm{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.