Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 12 - Vectors and the Geometry of Space - 12.3 Exercises - Page 831: 54

Answer

$ (r-a) \cdot (r-b)=0$ represents an equation of a sphere with center: $ [(\frac{a_1+b_1}{2}),(\frac{a_2+b_2}{2}),(\frac{a_3+b_3}{2})]$ and radius : $\frac{|a-b|}{2}$

Work Step by Step

Need to prove $ (r-a) \cdot (r-b)=0$ $ (r-a) \cdot (r-b)=r (r-b)-a (r-b)$ $=r \cdot r-(a+b) \cdot r +a \cdot b$ Now, $r \cdot r-(a+b) \cdot r +a \cdot b= \lt x,y,z \gt \cdot \lt x,y,z \gt- ( \lt a_1,a_2,a_3 \gt +\lt b_1,b_2,b_3 \gt ) \cdot \lt x,y,z \gt+ (\lt a_1,a_2,a_3 \gt ) \cdot (\lt b_1,b_2,b_3 \gt) $ $=x^2+y^2+z^2-(a_1+b_1)x-(a_2+b_2)y-(a_3+b_3)z+a_1b_1+a_2b_2+a_3b_3$ $x^2+y^2+z^2-(a_1+b_1)x-(a_2+b_2)y-(a_3+b_3)z+a_1b_1+a_2b_2+a_3b_3=(x-\frac{a_1+b_1}{2})^2+(y-\frac{a_2+b_2}{2})^2+(z-\frac{a_3+b_3}{2})^2+a_1b_1+a_2b_2+a_3b_3-(\frac{a_1+b_1}{2})^2-(\frac{a_2+b_2}{2})^2-(\frac{a_3+b_3}{2})^2=0$ Thus, $ (r-a) \cdot (r-b)=0$ represents an equation of a sphere with center : $ [(\frac{a_1+b_1}{2}),(\frac{a_2+b_2}{2}),(\frac{a_3+b_3}{2})]$ and radius : $\frac{|a-b|}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.