Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 12 - Vectors and the Geometry of Space - 12.3 Exercises - Page 830: 18

Answer

$cos^{-1}(\frac{8}{ \sqrt {20}\times \sqrt {5}})\approx 36.87^\circ$ or $cos^{-1}(\frac{8}{ \sqrt {20}\times \sqrt {5}})\approx 37^\circ$

Work Step by Step

The dot product of $a=a_{1}i+a_{2}j+a_{3}k$ and $b=b_{1}i+b_{2}j+b_{3}k$ is defined as $a.b=a_{1}\times b_{1}+a_{2}\times b_{2}+a_{3}\times b_{3}$ The magnitude of a vector is given as $|a|=\sqrt {(a_{1})^{2}+(a_{2})^{2}+(a_{3})^{2}}$ $a.b=8+0+0=8$ $|a|=\sqrt {(4)^{2}+(0)^{2}+(2)^{2}}=\sqrt {20}$ $|b|=\sqrt {(2)^{2}+(-1)^{2}+(0)^{2}}=\sqrt {5}$ Angle between two vectors is given by $cos\theta=\frac{a.b}{|a||b|}$ $cos\theta=\frac{8}{ \sqrt {20}\times \sqrt {5}}$ $\theta=cos^{-1}(\frac{8}{ \sqrt {20}\times \sqrt {5}})\approx 36.87^\circ$ Hence, $cos^{-1}(\frac{8}{ \sqrt {20}\times \sqrt {5}})\approx 36.87^\circ$ or $cos^{-1}(\frac{8}{ \sqrt {20}\times \sqrt {5}})\approx 37^\circ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.