Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.6 Exercises - Page 761: 9

Answer

The series diverges.

Work Step by Step

Use the Ratio Test: $\lim\limits_{n \to \infty}\Big|\frac{a_{n+1}}{a_n}\Big|$. Let $a_n=(-1)^n\frac{(1.1)^n}{n^4}$. Then, $\lim\limits_{n\to \infty}\Bigg|\frac{(-1)^{n+1}(1.1)^{n+1}}{{n+1}^4} \cdot \frac{n^4}{(-1)^n(1.1)^n}\Bigg|$. Because $(1.1)^n$ and $n^4$ are positive for all $n>0$ we can remove the absolute value lines and the alternating terms $(-1)^n$ and $(-1)^{n+1}$. Now, $\lim\limits_{n \to \infty}\Bigg[\frac{(1.1)^{n+1}}{(n+1)^4} \cdot \frac{n^4}{(1.1)^n}\Bigg]= \lim\limits_{n \to \infty}\Bigg[\frac{(1.1)n^4}{(n+1)^4}\Bigg]$ Divide the top and bottom by $n^4$. The limit is then $(1.1) \lim\limits_{n \to \infty}\left[\frac{1}{\frac{(n+1)^4}{n^4}}\right]=(1.1)\lim\limits_{n \to \infty}\left[\frac{1}{(1+\frac{1}{n})^4}\right]$ As $n\to \infty, 1+\frac{1}{n}\to 1$. Therefore, the limit is $(1.1)(1)=1.1>1$, and the series diverges by the Ratio Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.