Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.4 Exercises - Page 750: 29

Answer

Convergent

Work Step by Step

According to Ratio Test The sequence $a_{n}=\frac{1}{n!}$ will be converging if $\lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_{n}}| \lt 1$ $\frac{a_{n+1}}{a_{n}}=\frac{\frac{1}{(_n+1)!}}{\frac{1}{n!}}$ $=\frac{n!}{(n+1)!} $ $=\frac{n!}{n! \times (n+1)}$ $=\frac{1}{n+1}$ $\lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_{n}}| =\lim\limits_{n \to \infty} \frac{1}{n+1}=0 $ Therefore, the given sequence is converging. Alternate Solution: Clearly $n!=n (n-1)(n-2)...(3)(2)\geq 2.2.2....2.2=2^{n-1}$ Thus, $\frac{1}{n!} \leq \frac{1}{2^{n-1}} \Sigma_{n=1}^{\infty } \frac{1}{2^{n-1}}$ is a convergent geometric series $|r| =\frac{1}{2}\lt 1$, so , $ \Sigma_{n=1}^{\infty } \frac{1}{n!}$ converges by the Comparison Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.