Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.3 Exercises - Page 745: 42

Answer

(a) $s_{n}\leq 1+ln(n)$ (b) $s_{m}\leq 1+ln(10^{6})=1+6 ln 10\approx 14.816\lt 15$ where $m =10^{6}$ = 1 Million and $s_{b}\leq 1+ln(10^{9})=1+9 ln 10\approx 21.723\lt 22$ where $b =10^{9}$ = 1 Billion

Work Step by Step

(a) $\frac{1}{2}+\frac{1}{3}+....+\frac{1}{k}+...+\frac{1}{n}\lt \int_{1}^{n}\frac{dx}{x}$ $\frac{1}{2}+\frac{1}{3}+....+\frac{1}{k}+...+\frac{1}{n}\lt ln(n)$ Add $1$ to both sides. $1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{k}+...+\frac{1}{n}\leq 1+ln(n)$ LHS is $s_{n}$ Thus, $s_{n}\leq 1+ln(n)$ (b) The equality occurs only when $n=1$ Therefore, we have $s_{m}\leq 1+ln(10^{6})=1+6 ln 10\approx 14.816\lt 15$ where $m =10^{6}$ = 1 Million and $s_{b}\leq 1+ln(10^{9})=1+9 ln 10\approx 21.723\lt 22$ where $b =10^{9}$ = 1 Billion
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.