Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.2 Exercises - Page 737: 75

Answer

First step $e^{S_{n}} = exp (1 + \frac{1}{2} +\frac{1}{3} +\frac{1}{4} +...+ \frac{1}{n}) = e^{1} \times e^{\frac{1}{2}} \times e^{\frac{1}{3}} \times e^{\frac{1}{4}} ... e^{\frac{1}{n}}$ The rest is shown below to prove that the harmonic series is divergent.

Work Step by Step

$e^{S_{n}} = exp (1 + \frac{1}{2} +\frac{1}{3} +\frac{1}{4} +...+ \frac{1}{n}) = e^{1} \times e^{\frac{1}{2}} \times e^{\frac{1}{3}} \times e^{\frac{1}{4}} ... e^{\frac{1}{n}}$ Since $e^{n} \gt 1+n$ $e^{1} \times e^{\frac{1}{2}} \times e^{\frac{1}{3}} \times e^{\frac{1}{4}} ... e^{\frac{1}{n}} \gt (1+1) \times (1+\frac{1}{2}) \times (1+\frac{1}{3}) \times (1+\frac{1}{4}) \times ... \times (1+\frac{1}{n})$ $e^{S_{n}} \gt (\frac{2}{1}) \times (\frac{3}{2}) \times (\frac{4}{3}) \times (\frac{5}{4}) \times ... \times (\frac{n+1}{n})$ $e^{S_{n}} \gt n+1$ $\ln e^{S_{n}} \gt \ln(n+1)$ $S_{n} \gt \ln (n+1)$ $\lim\limits_{n \to \infty}S_{n} \gt \lim\limits_{n \to \infty} \ln(n+1)$ Sum of harmonic series $\gt \infty$ Hence the harmonic series diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.