Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.2 Exercises - Page 735: 32

Answer

The series is divergent.

Work Step by Step

$\Sigma^{\infty}_{n=1} \frac{1+3^{n}}{2^{n}}$ $s_{n} =\Sigma^{\infty}_{n=1} a_{n}$ $=\Sigma^{\infty}_{n=1} \frac{1+3^{n}}{2^{n}}$ $=\Sigma^{\infty}_{n=1} \frac{1}{2^{n}} + \Sigma^{\infty}_{n=1}\frac{3^{n}}{2^{n}}$ $=\Sigma^{\infty}_{n=1} \frac{1}{2^{n}} + \Sigma^{\infty}_{n=1} (\frac{3}{2})^{n}$ For $\Sigma^{\infty}_{n=1} \frac{1}{2^{n}}$ the series can be expressed as $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}...$ The first term $a=\frac{1}{2}$ and the common ratio $r= \frac{1}{2} \lt 1$ Since $|r| \lt 1$, the geometric series $=\Sigma^{\infty}_{n=1} \frac{1}{2^{n}}$ is convergent and the sum is $\Sigma^{\infty}_{n=1} \frac{1}{2^{n}} = \frac{a}{1-r}$ $=\frac{\frac{1}{2}}{1-\frac{1}{2}}$ $=\frac{\frac{1}{2}}{\frac{1}{2}}$ $=1$ For $\Sigma^{\infty}_{n=1} (\frac{3}{2})^{n}$, the series can be expressed as $\frac{3}{2}, \frac{9}{4}, \frac{27}{8}...$ The first term is $a=\frac{3}{2}$ amd the common ratio is $r=\frac{3}{2} \gt 1$ Since $|r| \gt 1$, the geometric series $=\Sigma^{\infty}_{n=1} (\frac{3}{2})^{n}$ is divergent. If $\Sigma a_{n}$ is convergent and $\Sigma b_{n}$ is divergent, then the sum is a divergent series.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.