Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.2 Exercises - Page 735: 31

Answer

The series is convergent and the sum is $\frac{5}{2}$

Work Step by Step

$\Sigma^{\infty}_{n=1}ar^{n-1} = \frac{a}{1-r}$ and $|r| \lt 1$ If $|r| \geq 1$, then the geometric series is divergent $\Sigma^{\infty}_{n=1} \frac{1+2^{n}}{3^{n}}$ $\Sigma^{\infty}_{n=1} (\frac{1}{3^{n}} + \frac{2^{n}}{3^{n}}) = \Sigma^{\infty}_{n=1} \frac{1}{3^{n}} + \Sigma^{\infty}_{n=1} \frac{2^{n}}{3^{n}}$ $=\Sigma^{\infty}_{n=1} (\frac{1}{3})^{n} + \Sigma^{\infty}_{n=1}(\frac{2}{3})^{n}$ First $\Sigma^{\infty}_{n=1} (\frac{1}{3})^{n} = \Sigma^{\infty}_{n=1} \frac{1}{3} (\frac{1}{3})^{n-1}$ $a= \frac{1}{3}$ and the common ratio is $r=\frac{1}{3}$ $|r|=|\frac{1}{3}|$ $=\frac{1}{3}$ $=0.3333$ Since $|r| \lt 1$, then $\Sigma^{\infty}_{n=1} (\frac{1}{3})^{n}$ is convergent and the sum is $\Sigma^{\infty}_{n=1} (\frac{1}{3})^{n} = \frac{a}{1-r}$ $=\frac{\frac{1}{3}}{1-\frac{1}{3}}$ $=\frac{\frac{1}{3}}{\frac{2}{3}}$ $=\frac{1}{2}$ Second $\Sigma^{\infty}_{n=1}(\frac{2}{3})^{n} = \Sigma^{\infty}_{n=1}\frac{2}{3}(\frac{2}{3})^{n-1}$ $a=\frac{2}{3}$ and the common ratio is $r=\frac{2}{3}$ $|r| =|\frac{2}{3}|$ $=\frac{2}{3}$ $=0.66666$ Since $|r| \lt 1$ the geometric series $\Sigma^{\infty}_{n=1}(\frac{2}{3})^{n}$ is convergent with the sum $\Sigma^{\infty}_{n=1}(\frac{2}{3})^{n} = \frac{a}{1-r}$ $=\frac{\frac{2}{3}}{1-\frac{2}{3}}$ $=\frac{\frac{2}{3}}{\frac{1}{3}}$ $=2$ If $\Sigma a_{n}$ and $\Sigma b_{n}$ are convergent series then the sum is a convergent series. The sum of the convergent series is $\frac{1}{2} + 2 = \frac{5}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.