Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.2 Exercises - Page 735: 14

Answer

Convergent with sum $\dfrac{5}{12}$

Work Step by Step

We are given the series: $\sum_{n=2}^{\infty}\dfrac{1}{n(n+2)}$. A partial sum for m terms can be written: $S_m=\sum_{n=2}^{m}\dfrac{1}{n(n+2)}=\sum_{n=2}^{m}\left(\dfrac{A}{n}+\dfrac{B}{n+2}\right)$ Determine $A,B$: $A(n+2)+Bn=1$ $An+2A+Bn=1$ $(A+B)n+2A=1$ $2A=1\Rightarrow A=\dfrac{1}{2}$ $A+B=0\Rightarrow B=-A=-\dfrac{1}{2}$ Rewrite $S_m$: $S_m=\sum_{n=2}^{m}\left(\dfrac{\dfrac{1}{2}}{n}+\dfrac{-\dfrac{1}{2}}{n+2}\right)=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)$ $=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+.....+\dfrac{1}{m}-\dfrac{1}{m+2}\right)$ $=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{m+1}-\dfrac{1}{m+2}\right)$ Determine at least 10 partial sums: $S_2=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)= 0.625$ $S_3=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{4}-\dfrac{1}{5}\right)\approx 0.19167$ $S_4=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{5}-\dfrac{1}{6}\right)\approx 0.23333$ $S_5=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{6}-\dfrac{1}{7}\right)\approx 0.26190$ $S_{10}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{11}-\dfrac{1}{12}\right)\approx 0.32955$ $S_{25}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{26}-\dfrac{1}{27}\right)\approx 0.37892$ $S_{50}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{51}-\dfrac{1}{52}\right)\approx 0.39725$ $S_{100}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{101}-\dfrac{1}{102}\right)\approx 0.40681$ $S_{500}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{501}-\dfrac{1}{502}\right)\approx 0.41467$ $S_{1000}=\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{1001}-\dfrac{1}{1002}\right)\approx 0.41567$ Graph both the sequence of terms (in blue color) and the sequence of partial sums (in red color). When $m\rightarrow \infty$, $\dfrac{1}{m+1}\rightarrow 0$ and $\dfrac{1}{m+2}\rightarrow 0$, so $S_m\rightarrow \dfrac{1}{2}\left(\dfrac{5}{6}\right)=\dfrac{5}{12}$, therefore the series is convergent, its sum being $\dfrac{5}{12}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.