Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.2 Exercises - Page 735: 12

Answer

Convergent with sum $\dfrac{49}{3}$

Work Step by Step

We are given the series: $\sum_{n=1}^{\infty} \dfrac{7^{n+1}}{10^n}$. Rewrite the series: $a_n=\sum_{n=1}^{\infty} 7\left(\dfrac{7}{10}\right)^n$. A partial sum for $m$ terms can be written: $S_m=\sum_{n=1}^{m} 7\left(\dfrac{7}{10}\right)^n=7\left(\dfrac{7}{10}\right)^1+7\left(\dfrac{7}{10}\right)^2+...+7\left(\dfrac{7}{10}\right)^m$ $=7\left(\dfrac{7}{10}\right)^1\cdot\dfrac{1-\left(\dfrac{7}{10}\right)^m}{1-\dfrac{7}{10}}$ $=7\left(\dfrac{7}{10}\right)\left(\dfrac{10}{3}\right)\cdot \left[1-\left(\dfrac{7}{10}\right)^m\right]$ $=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^m\right]$ Determine at least 10 partial sums: $S_1=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^1\right]=4.9$ $S_2=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^2\right]\approx 8.33$ $S_3=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^3\right]\approx 10.731$ $S_4=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^4\right]\approx 12.4117$ $S_5=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^5\right]\approx 13.58819$ $S_{10}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{10}\right]\approx 15.87198$ $S_{25}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{25}\right]\approx 16.33114$ $S_{50}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{50}\right]\approx 16.33333$ $S_{100}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{100}\right]\approx 16.33333$ $S_{500}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{500}\right]\approx 16.33333$ $S_{1000}=\dfrac{49}{3}\left[1-\left(\dfrac{7}{10}\right)^{1000}\right]\approx 16.33333$ Graph both the sequence of terms (in blue color) and the sequence of partial sums (in red color). When $m\rightarrow \infty$, $\left(\dfrac{7}{10}\right)^m\rightarrow 0$, so $S_m\rightarrow \dfrac{49}{3}$, therefore $a_n\rightarrow \dfrac{49}{3}$. Therefore the series is convergent, its sum being $\dfrac{49}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.