Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.11 Exercises - Page 799: 24

Answer

$0.61566$

Work Step by Step

Here, we have $f(x)=\sin x$ and $a=\dfrac{\pi}{6}$ and $f(x) \approx T_4(x)\approx |\dfrac{1}{2}+\dfrac{\sqrt 3}{2}(x-\dfrac{\pi}{6})-\dfrac{1}{4}(x-\dfrac{\pi}{6}))^2 +\dfrac{\sqrt 3}{12}-(x-\dfrac{\pi}{2})^6+\dfrac{1}{48}(x-\dfrac{\pi}{6})^4-\sin x |$ and $38^{\circ} \times \dfrac{\pi}{180^{\circ}} \approx \dfrac{19\pi}{90}$ Now, we need to check the Taylor inequality for the interval $\dfrac{\pi}{6}-\dfrac{2\pi}{45} \leq x\leq \dfrac{\pi}{6}+\dfrac{2\pi}{45}$ Now, $|R_n(x)|\leq \dfrac{M}{(n+1)!}|x-a|^{n+1}$ and $|R_4(x)|\leq \dfrac{1}{5!}|\dfrac{19\pi}{90}-\dfrac{\pi}{6}|^{5}\approx 0.00000041$ Thus, $ T_4(38^{\circ})=\dfrac{1}{2}+\dfrac{\sqrt 3}{2}(x-\dfrac{\pi}{6})-\dfrac{1}{4}(x-\dfrac{\pi}{6}))^2 +\dfrac{\sqrt 3}{12}-(x-\dfrac{\pi}{2})^6+\dfrac{1}{48}(x-\dfrac{\pi}{6})^4 $ Hence, $ T_4(38^{\circ})=T_4(\dfrac{19\pi}{90}) \approx 0.61566$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.