Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 693: 47

Answer

$$L=\frac{8}{3}\left[\left(\pi^{2}+1\right)^{3 / 2}-1\right]$$

Work Step by Step

Given $$ r=\theta^{2}, \quad 0 \leqslant \theta \leqslant 2 \pi $$ The length is given by \begin{align*} L&=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{ d \theta}\right)^{2}} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{\left(\theta^{2}\right)^{2}+(2 \theta)^{2}} d \theta\\ &=\int_{0}^{2 \pi} \sqrt{\theta^{4}+4 \theta^{2}} d \theta\\ &=\int_{0}^{2 \pi} \theta \sqrt{\theta^{2}+4} d \theta\\ &=\frac{1}{2}\frac{2}{3}(\theta^{2}+4)^{3/2}\bigg|_{0}^{2\pi}\\ &=\frac{1}{3}\left[4^{3 / 2}\left(\pi^{2}+1\right)^{3 / 2}-4^{3 / 2}\right]\\ &=\frac{8}{3}\left[\left(\pi^{2}+1\right)^{3 / 2}-1\right] \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.