Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 484: 10

Answer

$\displaystyle \frac{\pi}{16}$

Work Step by Step

From the Strategy for Evaluating $\displaystyle \int\sin^{m}x\cos^{n}xdx$ (c) If the powers of both sine and cosine are even, use the half-angle identities $\displaystyle \sin^{2}x=\frac{1}{2}(1-\cos 2x)\qquad\quad \cos^{2}x=\frac{1}{2}(1+\cos 2x)$ It is sometimes helpful to use the identity $\displaystyle \quad \sin x\cos x=\frac{1}{2}\sin 2x$ ---------- $\displaystyle \int_{0}^{\pi}\sin^{2}t\cos^{4}tdt=\frac{1}{4}\int_{0}^{\pi}\left(4\sin^{2}t\cos^{2}t\right)\cos^{2}tdt$ ... we are going to use $ \displaystyle \sin x\cos x=\frac{1}{2}\sin 2x$ $=\displaystyle \frac{1}{4}\int_{0}^{\pi}(2\sin t\cos t)^{2}\frac{1}{2}(1+\cos 2t)dt$ $=\displaystyle \frac{1}{8}\int_{0}^{\pi}(\sin 2t)^{2}(1+\cos 2t)dt$ $=\displaystyle \frac{1}{8}\int_{0}^{\pi}\left(\sin^{2}2t+\sin^{2}2t\cos 2t\right)dt$ $=\displaystyle \frac{1}{8}\int_{0}^{\pi}\sin^{2}2tdt+\frac{1}{8}\int_{0}^{\pi}\sin^{2}2t\cos 2tdt$ ... now, $\displaystyle \sin^{2}x=\frac{1}{2}(1-\cos 2x)$ for the first integral, and ... for the second, substituting $\left[\begin{array}{lll} u=\sin^{2}2t & \text{bounds:} & 0, 0\\ du=4\sin 2t\cos 2t & & \\ & & \end{array}\right]$ we have $=\displaystyle \frac{1}{8}\int_{0}^{\pi}\frac{1}{2}(1-\cos 4t)dt+ \displaystyle \frac{1}{4}\int_{0}^{0}udu$ $=\displaystyle \frac{1}{8}\int_{0}^{\pi}\frac{1}{2}(1-\cos 4t)dt+0$ $=\displaystyle \frac{1}{16}\left[t-\frac{1}{4}\sin 4t\right]_{0}^{\pi}$ $=\displaystyle \frac{1}{16}[(\pi-0)-(0-0)]$ $=\displaystyle \frac{\pi}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.