Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Review - Exercises - Page 538: 50

Answer

The given improper integral is: $$ \int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x =\frac{\pi}{4}+\frac{1}{2} \ln 2. $$

Work Step by Step

$$ \int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x $$ First, we integrate the Indefinite Integral by parts $$ \int \frac{\tan ^{-1} x}{x^{2}} d x $$ with $$ \left[\begin{array}{c}{u=\tan ^{-1} x , \quad\quad dv= \frac{dx}{x^{2}}} \\ {d u= \frac{d x}{1+x^{2} }, \quad\quad v= -\frac{1}{x} }\end{array}\right] $$ $$ \begin{split} \int \frac{\tan ^{-1} x}{x^{2}} d x &=\frac{-\tan ^{-1} x}{x}+\int \frac{1}{x} \frac{d x}{1+x^{2}} \\ & =\frac{-\tan ^{-1} x}{x}+\int\left[\frac{1}{x}-\frac{x}{x^{2}+1}\right] d x \\ &=\frac{-\tan ^{-1} x}{x}+\ln |x|-\frac{1}{2} \ln \left(x^{2}+1\right)+C \\ &=\frac{-\tan ^{-1} x}{x}+\frac{1}{2} \ln \frac{x^{2}}{x^{2}+1}+C \end{split} $$ Now, we evaluate the given integral $$ \int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x $$ as follows: $$ \begin{aligned} \int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x &=\lim _{t \rightarrow \infty}\left[-\frac{\tan ^{-1} x}{x}+\frac{1}{2} \ln \frac{x^{2}}{x^{2}+1}\right]_{1}^{t}\\ &=\lim _{t \rightarrow \infty}\left[-\frac{\tan ^{-1} t}{t}+\frac{1}{2} \ln \frac{t^{2}}{t^{2}+1}+\frac{\pi}{4}-\frac{1}{2} \ln \frac{1}{2}\right] \\ &=0+\frac{1}{2} \ln 1+\frac{\pi}{4}+\frac{1}{2} \ln 2\\ &=\frac{\pi}{4}+\frac{1}{2} \ln 2 \end{aligned} $$ Thus the given improper integral is: $$ \int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x =\frac{\pi}{4}+\frac{1}{2} \ln 2. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.