Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Review - Exercises - Page 538: 45

Answer

The given improper integral $$ \int_{0}^{4} \frac{\ln x}{\sqrt{x}} d x=4 \ln 4-8. $$

Work Step by Step

$$ \int_{0}^{4} \frac{\ln x}{\sqrt{x}} d x $$ Observe that the given integral is improper because $ f(x)= \frac{\ln x}{\sqrt{x}} $ has the vertical asymptote $x =0 $. Since the infinite discontinuity occurs at the left endpoint of $ [0, 4] $ , we must use part (b) of Definition 3 : $$ \begin{aligned} \int_{0}^{4} \frac{\ln x}{\sqrt{x}} d x &= \lim _{t \rightarrow 0^{+}} \int_{t}^{4} \frac{\ln x}{\sqrt{x}} d x \\ & \quad\quad\quad\left[\text { use integration by parts with } \right] \\ &\quad\quad\quad \left[\begin{array}{c}{u=\ln x, \quad\quad dv= \frac{dx}{ \sqrt x } }\\ {d u= \frac{dx}{x }, \quad\quad v= 2\sqrt x }\end{array}\right] , \text { then }\\ &=\lim _{t \rightarrow 0^{+}} \left[ 2\sqrt x \ln x- 2\int_{t}^{4} \frac{dx}{ \sqrt x } \right]\\ & = \lim _{t \rightarrow 0^{+}} \left[ 2\sqrt x \ln x- 4 \sqrt x \right]_t^{4} \\ & =\lim _{t \rightarrow 0^{+}}[(2 \cdot 2 \ln 4-4 \cdot 2)-(2 \sqrt{t} \ln t-4 \sqrt{t})] \\ & =[(2 \cdot 2 \ln 4-4 \cdot 2)-(\lim _{t \rightarrow 0^{+}}(2 \sqrt{t} \ln t) -0)] \\ &=(4 \ln 4-8)-(0-0) \\ & =4 \ln 4-8. \end{aligned} $$ where $$ \lim _{t \rightarrow 0^{+}}(2 \sqrt{t} \ln t)=0 $$ by using L'Hospital's rule: $$ \lim _{t \rightarrow 0^{+}}(2 \sqrt{t} \ln t)=\lim _{t \rightarrow 0^{+}} \frac{2 \ln t}{t^{-1 / 2}} \underset{t \rightarrow 0^{+}}{\lim } \frac{2 / t}{-\frac{1}{2} t^{-3 / 2}}=\lim _{t \rightarrow 0^{+}}(-4 \sqrt{t})=0 $$ Thus the given improper integral is: $$ \int_{0}^{4} \frac{\ln x}{\sqrt{x}} d x=4 \ln 4-8. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.