Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Review - Exercises - Page 538: 21

Answer

$=\ln|x-2+\sqrt{x^{2}-4x}|+D $

Work Step by Step

$\displaystyle \int\frac{dx}{\sqrt{x^{2}-4x}}$ = ... expand to perfect square under the square root.... $=\displaystyle \int\frac{dx}{\sqrt{(x^{2}-4x+4)-4}}$ $=\displaystyle \int\frac{dx}{\sqrt{(x-2)^{2}-2^{2}}}$ We have a $\sqrt{u^{2}-a^{2}}^{ }$ form here, try the trigonometric substitution $\left[\begin{array}{ll} x-2=2\sec\theta & \\ dx=2\sec\theta\tan\theta d\theta & \end{array}\right] $ $=\displaystyle \int\frac{2\sec\theta\tan\theta}{2\tan\theta}d\theta$ ... reduce 2 and tan ... $=\displaystyle \int\sec\theta d\theta$ $=\ln|\sec\theta+\tan\theta|+C$ ... bring back x $\left[\begin{array}{llll} \sec\theta = \frac{x-2}{2} & & & \\ \tan^{2}=\sec^{2}\theta-1 & \Rightarrow & \tan^{2}\theta & =(\frac{x-2}{2})^{2}-1\\ & & & =\frac{x^{2}-4x+4-4}{4}\\ & & \tan\theta & =\frac{\sqrt{x^{2}-4x}}{2} \end{array}\right]$ $=\displaystyle \ln|\frac{x-2}{2}+\frac{\sqrt{x^{2}-4x}}{2}|+C$ $=\displaystyle \ln|\frac{1}{2}(x-2+\sqrt{x^{2}-4x})|+C$ $=\ln|x-2+\sqrt{x^{2}-4x}|-\ln 2+C$ $=\ln|x-2+\sqrt{x^{2}-4x}|+D,\qquad $, where $D=C-\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.