Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Review - Concept Check - Page 537: 6

Answer

The statement is True: The given improper integral $$ \int_{1}^{\infty} \frac{1}{x^{\sqrt 2}} d x =\frac{1}{\sqrt {2}-1} $$ is convergent.

Work Step by Step

The given integral $$ \int_{1}^{\infty} \frac{1}{x^{\sqrt 2}} d x $$ is an improper integral, hence $$ \begin{split} \int_{1}^{\infty} \frac{1}{x^{\sqrt 2}} d x & = \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{\sqrt 2}} d x \\ & =\lim _{t \rightarrow \infty} \left[ \frac{x^{-\sqrt {2}+1}}{-\sqrt {2}+1} \right]_{1}^{t}\\ & =\lim _{t \rightarrow \infty} \frac{1}{-\sqrt {2}+1} \left[ \frac{1}{t^{\sqrt {2}-1}}-1 \right] \\ & = \frac{1}{\sqrt {2}-1} \end{split} $$ Thus the given improper integral $$ \int_{1}^{\infty} \frac{1}{x^{\sqrt 2}} d x =\frac{1}{\sqrt {2}-1} $$ So, the integral is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.