Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 6 - Section 6.1 - Areas Between Curves - 6.1 Exercises - Page 435: 30

Answer

$4(\sqrt5-2)$

Work Step by Step

The area is indicated by the purple lines. We need to first calculate the intersection points. $\frac{x}{\sqrt{1+x^2}}=\frac{x}{\sqrt{9-x^2}}$ $1+x^2=9-x^2$ $x=2;x=0;x=-2$ $\int_{-2}^0\Big(\frac{x}{\sqrt{9-x^2}}-\frac{x}{\sqrt{1+x^2}}\Big)dx+\int_{0}^2\Big(\frac{x}{\sqrt{1+x^2}}-\frac{x}{\sqrt{9-x^2}}\Big)dx$ $\int\frac{x}{\sqrt{9-x^2}}dx$ $u=9-x^2;\frac{du}{dx}=-2x;dx=\frac{du}{-2x}$ $\int\frac{x}{\sqrt{u}}\frac{du}{-2x}=\frac{-1}{2}\int\frac{1}{\sqrt{u}}du=-\sqrt{u}$ $\int\frac{x}{\sqrt{9-x^2}}dx=-\sqrt{9-x^2}$ Similarly, $\int\frac{x}{\sqrt{1+x^2}}=\sqrt{1+x^2}$ $\int_{-2}^0\Big(\frac{x}{\sqrt{9-x^2}}-\frac{x}{\sqrt{1+x^2}}\Big)dx+\int_{0}^2\Big(\frac{x}{\sqrt{1+x^2}}-\frac{x}{\sqrt{9-x^2}}\Big)dx=$ $[-\sqrt{9-x^2}-\sqrt{1+x^2}]_{-2}^{0}+[\sqrt{1+x^2}+\sqrt{9-x^2}]_0^2=4(\sqrt5-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.